

Michal Weis

Pavol Novotný, PhD Prototype developer, IBL

Jozef Matula

5th Workshop on the use of GIS/OGC standards in meteorology, 28th–30th Oct2014 Offenbach, Germany

Overview

- What we achieved already
- Big Data and our related ambitions
- WCS 2.0 MetOcean extension prototype
 - Live demo
 - Idea failures and successes
 - (some) IBL extensions of the original "MetOcean Extension"
- What you can try out
 - SWIM Master Class exercise
 - Prototype service endpoints
 - Prototyping documentation

Big Data Comes to The Town

- Motivation: we are heading to data hungry future world
- How big the big data is really?
- We are on the dawn of weather data explosion it is getting

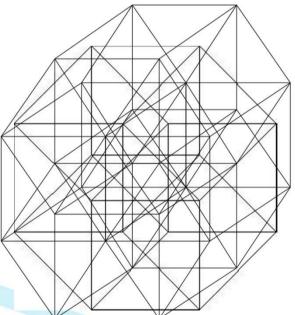
BIG BIG BIG (really BIG)

number of major HPC upgrades at weather services

- global models soon down to 10km, huge local models/EPS
- new generation of weather satellites

- NPP, Himawari, GOES-R, MTG

 it is not possible to transfer all source data anymore, even manipulating within a single system gets impossible


- need vertical & horizontal scalability, exploring other architectures

• Need for service centric approach, can't ship data

Most of this data is actually (somehow) gridded. Very obvious cartographic/raster data will come in simple 2D geographical grid

This is where we are just starting operating - at 5 dimensional Hypercube, and going even further.

(And by the way also in different shapes! Such as Icosahedral)

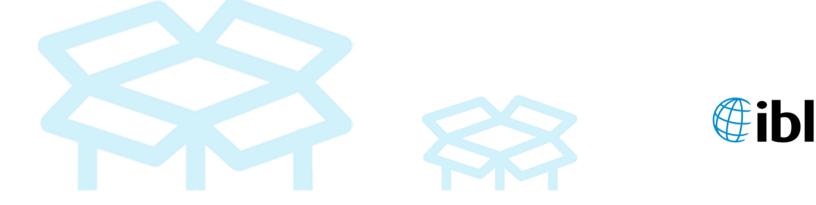
- Properly expose metadata about available gridded data
 - Correctly understand "model run" semantics (e.g every 6 hours there is new run ⇒ coverage available) instead of hiding it behind "reference something time".
 - Understand: available parameters, units of measure, missing fields.
- Properly cope with isobaric height as "z" dimension and allow interpolation in this axis
 - ... and cope with other vertical level types too (e.g. gpm).
- Do as much as possible to on the server in order to allow extraction and processing of gridded data in a web application (Java Script)
- Support per-polygon, corridor (2D, 3D, 3.5D, 4D) data extraction

Struggles & Failures

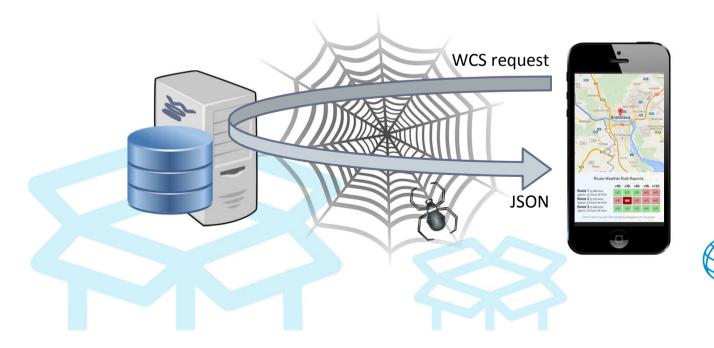
- Not suitable for REST-like "Permalink" approach. Requests contain various time varying parameters (e.g. absolute time range for trimming)
- Super-easy Denial of Service attacking.
- Ensemble dimension is not suitable for trimming (it is a discrete dimension), needs another approach instead
 - Does not make too much sense to trim range <5; 7> for to query only members 5, 6 and 7
- GRIB ranged layers e.g. "10-15cm under ground" are problem
 - Theoretically can be seen as GetCoverage Trim, but what if user asks for different range?
 - Shall this be treated as special "single value" vertical level type?

Successes (Some Workaround Found)

- "Permalink" one request forever:
 - Idea of "Latest run coverage" (kind of "best run")
 - Slice and trim in "f" (forecast offset) dimension
- Denial of Service
 - Request time restriction, accessed grid count restriction, per-user policies
 - Ensemble processing functions GetCoverageStatistics
 - Allowing probability thresholds, determining probability of event & PDF distribution
 - What is the minimum 2m temperature in this polygon?
 - What is the minimum 2m temperature from minimum of all ensemble members in this polygon?



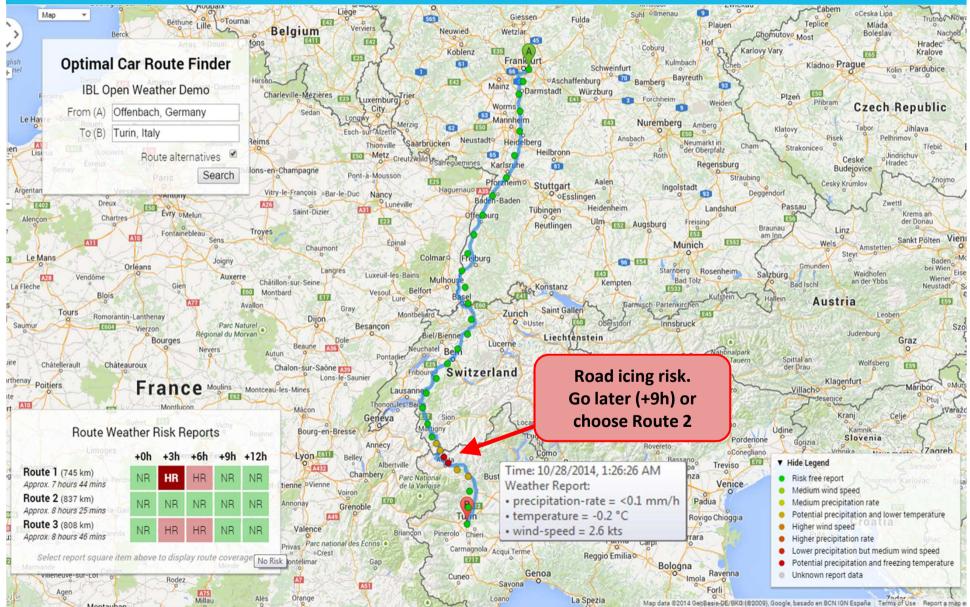
Prototype Service Endpoints

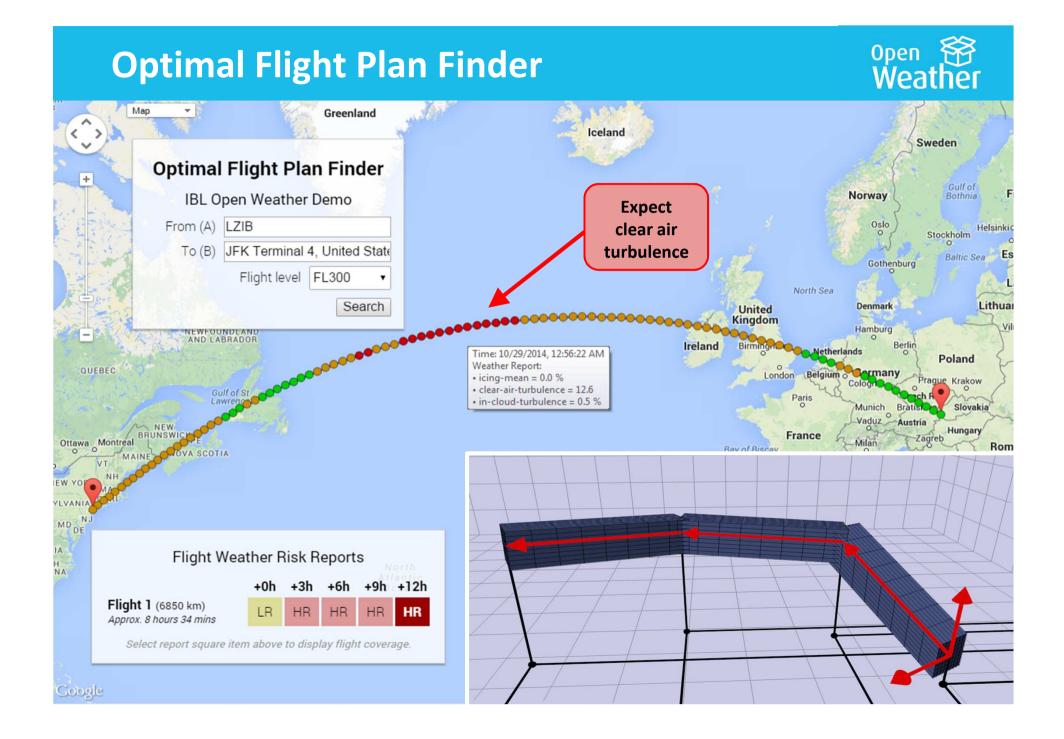

- Intro with examples of GetCoverage and GetCorridorCoverage requests (which you can try out already today):
 - <u>https://swim.iblsoft.com/wcs-intro/</u>
 - -<u>https://swim.iblsoft.com/wxcube?SERVICE=WCS&REQUEST=GetCapa</u> <u>bilities&VERSION=2.0.0</u>
 - -<u>https://ogcie.iblsoft.com/metocean/wcs?SERVICE=WCS&REQUEST=G</u> etCapabilities&VERSION=2.0.0
 - -<u>https://ogcie.iblsoft.com/wafc/kwbc?SERVICE=WCS&REQUEST=GetCa</u> pabilities&VERSION=2.0.0

So we have a powerful server - now we need to demonstrate what it is good for!

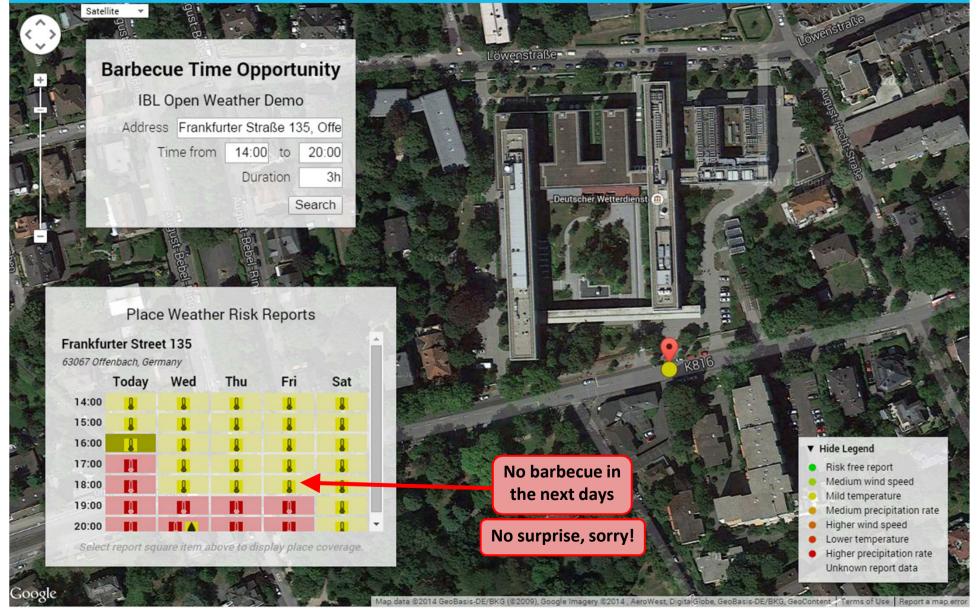
- Simple Java Script apps using Google Maps API as the background:
 - Server is dumb raw data provider
 - Application does the "clever decision" part (for now)

Examples that use WCS 2.0 MetOcean in somehow "practical way" for demonstration. See <u>https://ogcie.iblsoft.com/ow/</u>

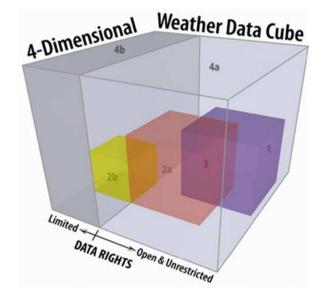

- Optimal Car Route Finder
 - Optimal time for route travel by car depending on weather impacts.
- Optimal Flight Plan Finder
 - 3D+T Corridor extraction for optimal time of flight depending on weather impacts (turbulence, icing).
- Barbecue Time Opportunity
 - Best opportunity time window for barbecue depending on weather impacts.

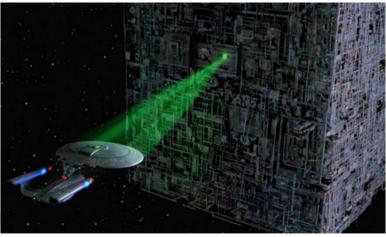


Optimal Car Route Finder



Barbecue DST Window of Opportunity





EuroControl SWIM Participation

- 4D Weather Cube buzz have you ever seen it?
- Yet another ambition Show that prototype can serve weather data as a WCS 2.0 - including:
 - very high resolution NWP models (500m resolution) around Vienna airport
 - global model
- Still a question how to blend different sources of data... It's client task(?)



Yes, we've seen Borg Cube, that's right! But not yet the Borg Hypercube...

From Big Data to Best Data (Challenges)

- Data blending of multiple nested gridded models for single trajectory: "Best Data" principle
- Although not visible, already simply done in BBQ TDA in client

- Performing multi-domain blending (also with maintaining PV) is doable task at server side since client should not worry about it
- However we need to challenge blending of multiple Big Data services into Best Data without major traffic between them!

- Traditional OGC architecture one service for data retrieval -WCS another service for data processing - WPS/WCPS - cannot scale with data volume growth. Whatever you consider fast:
 - ADD: How long it takes to encode/decode/transfer data?
 Forget XML, GML interchange
 - MULTIPLY: For large data volumes, users share LAN bandwidth
 10GBit & 10 users = 1GBit per user = 100MB transfer takes 1 second.
 - MULTIPLY: What if user needs to evaluate alternative routes?
 Balance between multiple coverage queries vs. one query for larger volume surrounding all routes (if possible)
- Even bigger data reduction is needed "on the service side"
 - Need to "bring problem to data" (fascading WPS)
 - WPS/WCPS working on "local data" is a direction?
 - Customer algorithms running from App Store
 - Need to operate on cross-domain cross-server

Conclusions

- This is not a "Best Practice"
 - This is just a prototype to gather Real Practice
 - However it is already suitable for operational deployment (e.g. QoS and user policies)
- You can try it out

catalog)

– Human to Machine mode - try out demo apps <u>https://ogcie.iblsoft.com/ow/</u>

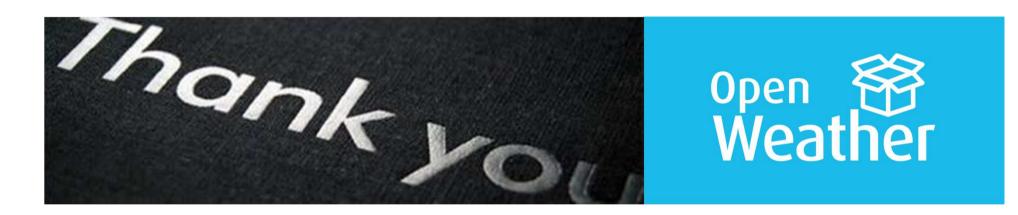
next time when you fly, go by car for a long trip in winter or plan a barbecue.

- **Machine to Machine** read documentation, build WCS to queries:
 - NCEP GFS global coverage model

Moving ℃

Weather

- NCEP Washington WAFC aviation model


Integration of WCS within other (our) products (data delivery,

Discover Q

Weather

Visual C

Weather

Your questions are welcome!

