



OGC Interoperability Program

5th Workshop on the use of GIS/OGC standards in meteorology
Offenbach, Germany

Dr. Ingo Simonis, Director IP & Science 28 October 2014

Interoperability - EASIER SAID THAN DONE -

OCT OPEN GEOSPATIAL CONSORTIUM 2014

- MAKING LOCATION COUNT -

 A setting that aligns technology users and providers to work collaboratively

RIGHT SETTING

 An agile development environment to evolve, test, and validate standards under marketplace conditions

RIGHT SETTING

RIGHT ENVIRONMENT

 An effective way to share the costs of developing wellcrafted standards that provide concrete foundations for future enterprise architectures

RIGHT SETTING

RIGHT ENVIRONMENT

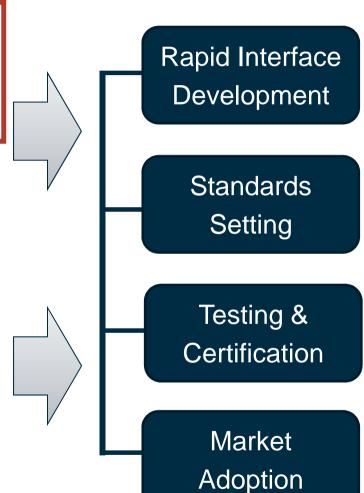
COST SHARING

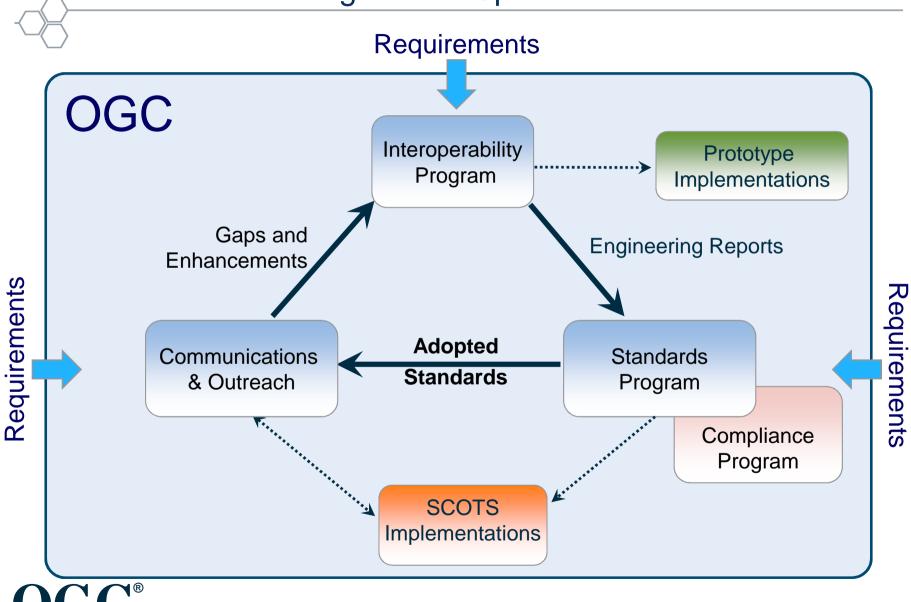
- A repeatable process for building & exercising privatepublic partnerships to:
 - accelerate development of emerging concepts
 - rapidly demonstrate new mission capabilities
 - drive global trends in technology and interoperability

RIGHT SETTING

RIGHT ENVIRONMENT

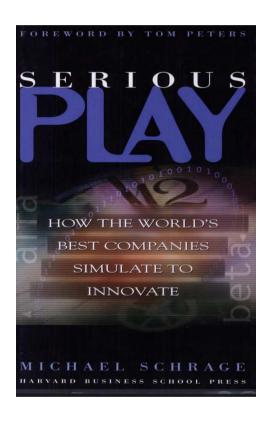
COST SHARING


REPEATABLE PROCESS


- Interoperability Program (IP) a global, innovative, hands-on rapid prototyping and testing program designed to unite users and industry in accelerating interface development and validation, and the delivery of interoperability to the market
- Standards Program Consensus standards process similar to other Industry consortia (World Wide Web Consortium, OMA etc.).
- Compliance Testing and Certification
 Program allows organizations that implement an OGC standard to test their implementations with the mandatory electrical that standard
- Communications and Outreach Program education and training, encourage take up of OGC specifications, business development, communications programs

Iterative Development

Yielding Tested Specifications



Innovation through prototyping

As a rule, the more prototypes and prototyping cycles per unit of time, the more technically polished the final product.

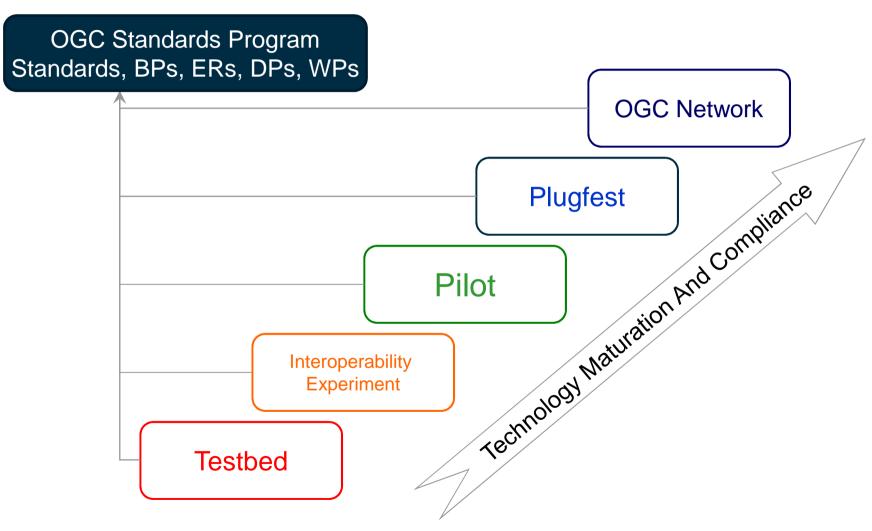
M. Schrage

Prototyping Versus Specifying

Prototyping
yielded products
with roughly
equivalent
performance, but
with about 40%
less code and
45% percent less
effort.

The prototyped products rated some what lower on functionality and robustness, but higher on ease of use and ease of learning.

Specifying produced more coherent designs and software that was easier to integrate.



Boehm, Gray, Seewald (1984) IEEE Transactions of Software Engineering, Vol 10, 1984

Increasing the Technology Readiness Level

Testbeds

- Testbeds are fast-paced, multi-vendor collaborative efforts to define, design, develop, and test candidate interface and encoding specifications
- These draft specifications are then reviewed, revised, and, potentially, approved in the OGC Specification Program

```
revieweddefine
     Program
    revised potentially
candidate encoding
    multi-vendor
   collaborative
```


Testbed 11

- RFQ is out! Closes Nov 21
- http://www.opengeospatial.org/standards/requests/126

Testbed 11 - Topics

	\neg
\mathbb{Z}	_/
_//	$ \setminus $

OGC Testbed 11	Threads			
Themes	Climate Resilience	Urban Resilience	Aviation	Geo4NIEM*
Cloud computing and performance (and security)	•			
Aviation and Flight Information (and security)			•	
Climate / Big Data processing and analysis	•			
Provenance – query and data optimization		•		
Digital Weather service and data delivery (WCS profile and WXXM)	•		0	
Social Media information processing (search, formats, context)	0	•		
Mobile applications (and security)	•			
Smart Cities / IoT		•		
Geosynchronization, GeoPackage and possible extensions		•	0	
Semantic Mediation and Linked Data	0	•		
Security (identification, authorization, access)	•	0	0	•
Symbology Management & Styling		•		

primary / lead

^{* -} may be a thread or separate project (TBD)

O - cross-thread related tasks

OGC Pilot Projects

OGC Pilot Projects apply and test OGC standards in real world applications using standards-based commercial off-the-shelf (SCOTS) products that implement OGC standards. Pilot Projects also help organizations identify gaps to be addressed by further standards development work.

Special Activity Airspace (SAA)

- Increasing situational awareness
- Demonstrate the use of real-time weather information (radar) accessible via web services to enable increased level of situational awareness for flight planners, pilots and operations centers

OGC Plugfest Projects

OGC Plugfests are events where vendors cooperatively test (and possibly refine) their OGC-based products in a hands-on engineering setting. Plugfests are used to:

- assess the degree to which different products in the marketplace interoperate together based on their implementation of OGC standards,
- advance the interoperability of geospatial products and services based on OGC standards in general or within specific communities.

technology issues considered in an initiative of the OGC Interoperability Program
This document does not represent an official position of the OGC. It is subject to change without notice and may not be referred to as an OGC Standard. However, the discussions in this document could very well lead to the definition of an OGC

OGC® Engineering Report

Not approved for public release

Convright © Open Geospatial Consortium

Deliverables of OGC Interoperability Projects

1. Technical Documents

(draft standards, best practices, change requests, etc)

2. Prototype Implementations

(services, clients, tools, etc)

3. Demonstrations

EXAMPLES OF TECH EVOLUTION

OGC®

OWS Testbeds support of SWE Version 1

OWS-1 Testbed

- Sponsors:
 EPA, General
 Dynamics, NASA,
 NIMA
- Specs: SOS, O&M, SensorML, SPS, WNS
- Demo: Terrorist, Hazardous Spill and Tornado
- Sensors: weather stations, wind profiler, video, UAV, stream gauges

OWS-3 Testbed

- Sponsors:
 NGA, ORNL,
 LMCO, BAE
- Specs: SOS, O&M, TML, SensorML, SPS
- Demo: Forest Fire in Western US
- Sensors:
 weather stations,
 wind profiler, video,
 UAV, satellite

OWS-4 Testbed

- Sponsors:
 NGA, NASA, ORNL,
 LMCO
- Specs: SOS, O&M, SensorML, SPS, TML, SAS
- Demo:
 Radiation,
 Emergency Hospital
- Sensors: weather stations, wind profiler, video, UAV, satellite

SWE v1 Standards approved:

SensorML - V1.0.1

TML - V1.0

SOS - V1.0

SPS - V1.0

O&M - V1.0

SAS - V0.0

WNS – Best Practices

2001/02 2005 2006 2007

Source: M. Botts

OGC IP influence on SWE deployments

DoD /IC SensorWeb NOAA IOOS DMAC NASA EO-1 Sensor Web

OGC Empire Challenge Pilot

2008

OGC Ocean Science IE 1 and 2

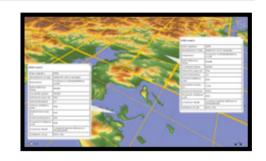
2007/2009

OGC OWS-5 Testbed

2008

SWE v1 Standards approved

2007


Source: M. Botts

OGC Aviation Maturity

2008-2009: OWS-6

2010-2011: FAA SAA Pilot 2010: OWS-7

2012: OWS-9

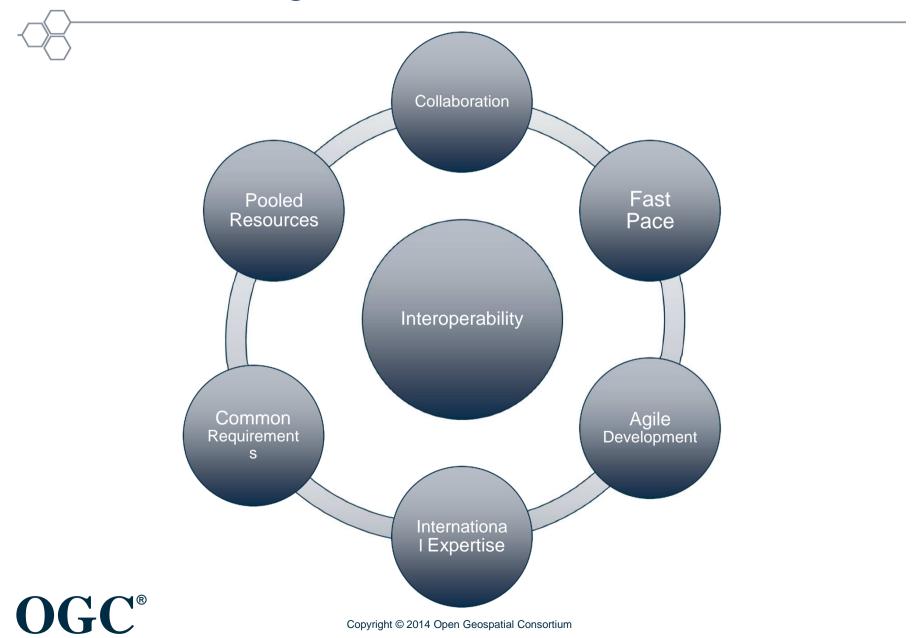
2011: OWS-8

2013-2014: AAtSH

2013-2014: OWS-10

SUMMARY

OGC®


IP Initiatives: 1999 to 2014

Plugfests	4
Pilots	26
Interop Experiments	18
Testbeds	18
Concept Development	13
Support Services	6
Total	85

Ingredients for Success

Return on Investment

Participants

Sponsors

Business potentials	Significant efficiencies
Early insights and skill building	Ability to Determine Market Interest
Early visibility and market deployment	Accelerated process - workable interface specifications in 4-6 months
Direct influence	Vendors test, validate and demonstrate interface integrity – Rapid time to market
Broaden market reach	Leverage of other sponsor' funding to solve common/similar problems

OWS-9 ROI for combined Sponsor funding = 3.5

Thank you. Questions?

www.boardpanda.com

Last ideas for your Halloween Pumpkins!

