# Interoperability

## Marie -Françoise Voidrot-Martinez Météo-France Co–chair of the OGC Met Ocean Domain Working Group

Support de présentation Interoperability Validation par MF Voidrot 13/03/2013

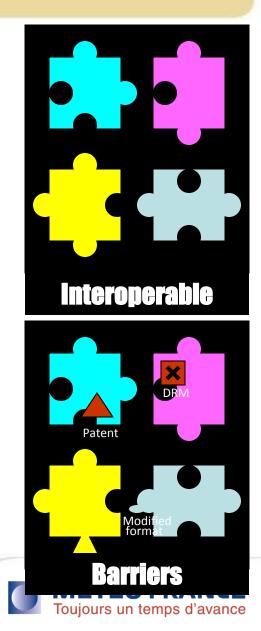


# Summary

- What is interoperability?
- Is it new?
- The different initiatives pushing interoperability development
- Which benefits can we get from interoperability?
- Where are we now?
- Conclusion



# What is interoperability?

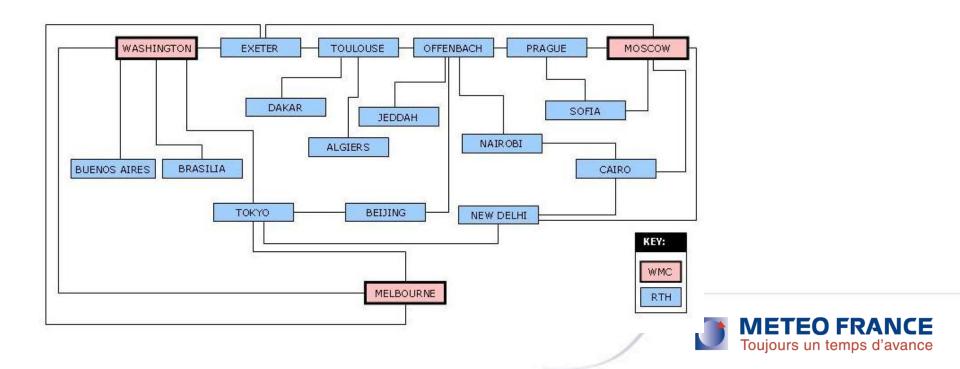







- In input :
- In output :






# Is it new? Not really within Met services...



•defines standards,

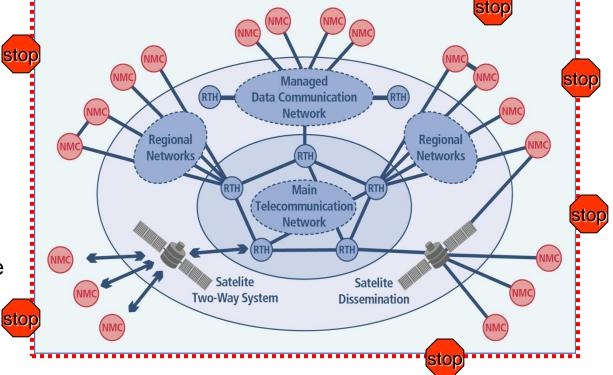
- •organises the exchanges of data in real time,
- •defines the catalogues and conditions of the exchanges,
- supports knowledge transfers
- •and generally facilitates exchanges between Met services since decades



## ... but yes with other domains






# 1 - WMO Information System (WIS)

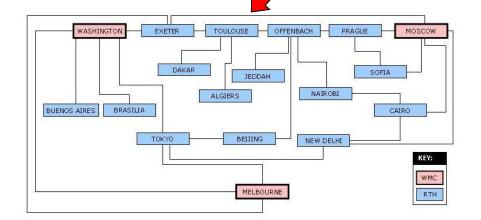




## Today : the Global Telecommunication System

- Global Telecommunications System (GTS)
  - Observations
  - Forecasts
  - Warnings
- Standardized Message switching system
- Private Network
  - Node to Node network
  - Based on a "push" type technology
  - Inflexible




#### Not available to:

–Universities, International Organizations (IAEA, CTBTO, UNEP, FAO..), Climate research institutes, Regional Climate Centres, Commercial Service Providers...

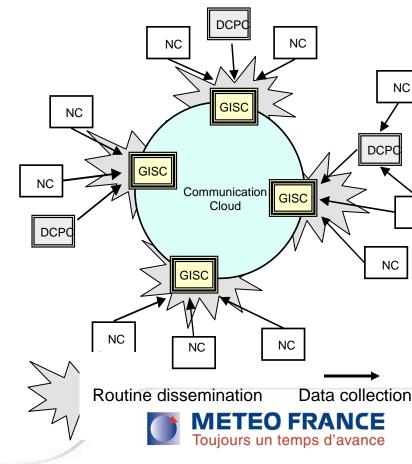


# Meteo-France : a main node into the GTS

- Météo-France : node of the GTS
  - Relying on a message switching system (TRANSMET)
  - Data catalogs defined for each telecommunication link
- Completed by satellite broadcasts included into Eumetcast broadcast



- Over Europe
- W3 at 7 degrees East


- Over Africa



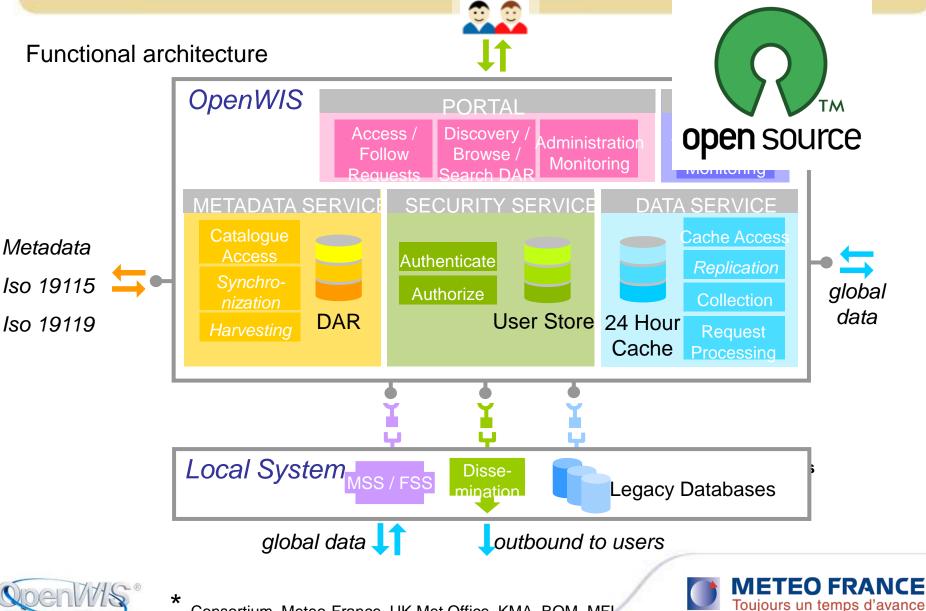


# WMO Information System (WIS)

- 2003 : Decision to update the GTS : concept of "WMO Information System" (WIS)
  - "A single, co-ordinated global infrastructure for the collection and sharing of information in support of all WMO and related international programmes"
  - Data and products oriented
  - Discovery services and Portal to access the data
- 3 main components
  - National Centres (NC)
  - Data Collection or Production Centres (DCPC)
  - Global Information System Centres (GISC)
    - 10 max :
    - Collect the data,
    - disseminate them through their area of responsability,
    - real time exchange,
    - archive,
    - discovery and availability via a catalog



# OpenWIS will be used for different roles


- GISC
- DCPCs
  - Regional Telecom Hub Toulouse on MTN : Collect, distribute, and exchange data and products on GTS
  - Regional Specialized Meteorological Centre on Atmospheric Transport Modeling products for environmental emergency response and backtracking : Produce transport simulation of hazardous substances in the atmosphere. Direct dissemination of products to relevant NMHSs
  - Regional Specialized Meteorological Centre on Tropical Cyclones in La Réunion : *Produce and Provide information on tropical cyclones in the South indian Ocean*
  - Volcanic Ash Advisory Centre : *Provide ash advisory on Africa on extended Europe*
  - Regional Climate Centre : Provide climate products to support climate services of NMHSs in the Europe region
  - Global Production Centre for Long-Range Forecast : Produce regional analysis and long-range forecast
  - Regional Radar Data Centre : Collect radar data and produce radar mosaic to support NMHSs in the Europe region
  - Regional NWP support
- NC : French National Center

Endorsed by CBS



Under review by ET-GDDP

# Meteo-France contribution to the WIS via OpenWIS\* :



Consortium Meteo-France, UK Met Office, KMA, BOM, MFI

## Main WIS milestones

## • Mid 2012 :

- GISC Operations : Current GTS implementation

#### • End 2012 :

- DCPCs operations

#### **2015**

- Visualisation
- INSPIRE



# Some WIS portals URL

- Meteo-France : : <u>http://wisp.meteo.fr:8080/openwis-user-portal/srv/en/main.home</u>
- Met Office : <u>http://wis.metoffice.gov.uk/openwis-user-portal/srv/en/main.home</u>
- Japan Meteorological Administration : <u>http://www.wis-jma.go.jp/cms/</u>
- China : <u>http://wisportal.cma.gov.cn/wis/jsp/systemManage/Register.jsp</u>





# 2 – EC INSPIRE directive and infrastructure





## **INSPIRE** Overview

- INfrastructure for SPatial InfoRmation in Europe (INSPIRE)
- Laid down
  - in a European Community Directive accepted May 2007 so called...the INSPIRE Directive,
  - in Implementing Rules,
  - (many !) guideline documents …
- Aim: "establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment"
  - enable exchange of spatial information between the member states to support environmental policies
  - Keywords: Harmonization, Metadata, Services, Infrastructure ...
- This leads to Interoperability, standards (and OGC !)



Toujours un temps d'avance



# **INSPIRE** data specification

• What data ?



- A Drafting Team has provided a high level definition of data themes, laid down in 3 annexes :
  - Annexe I and II : "Basic" geographic data
    - CRS, Grid Systems, Addresses, Cadastral Parcels, Hydrography...
    - Elevation, Orthoimagery, Geology...

#### – Annexe III :

- Human Health and Safety (Air quality : O3, NO2, SO2, UV, aerosols)
- Natural Risk Zones
- Atmospheric conditions (Precipitation, wind, clouds, lightning, temperature, UV)
- Meteorological geographical features (Synoptic observations, clouds, precipitation.)
- Oceanographic geographical features
- Sea Region (Sea water temperature, sea level)





## Main INSPIRE milestones

## December 2013 :

- Metadata available for spatial data corresponding to Annex III

## January 2015 :

 Newly collected and extensively restructured Annex II and III spatial data sets available

## May 2019

- Other Annex II and III spatial data sets available





# 3 – Open Geospatial Consortium Met Ocean Domain Working Group



# What is the Open Geospatial Consortium : OGC ?

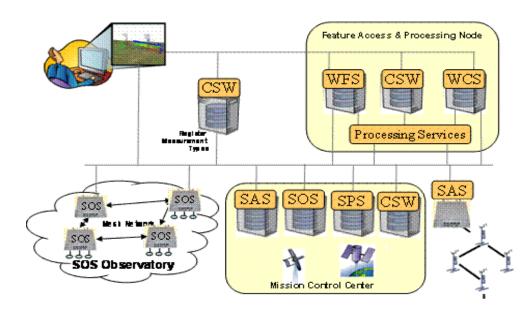
- A non-profit international organization founded in 1994,
- Develop publicly available interface standards for geospatial data and services
- Based on consensus from governments, private Industry, Academia, NGOs
- Some standards fast tracked in ISO
- The aim : ensure interoperability for geospatial data and services



#### Standards Working Groups

Standards Working Groups (SWG) have specific charter of working on a candidate standard prior to approval as an OGC standard or on making revisions to an existing OGC standard.

| Name                                                                         | Lead **                                                                         |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Catalogue Services 3.0 SWG (Cat 3.0 SWG)                                     | Doug Nebert, US Geological Survey (USGS)                                        |
| CF-NetCDF 1.0 SWG (CF-NetCDF1.0SWG)                                          | Ben Domenico, National Center for Atmospheric Research (NCAR)                   |
| CityGML SWG (CityGML SWG)                                                    | Carsten Roensdorf, Ordnance Survey                                              |
| ebRIM AP of CSW SWG (ebRIM AP of CSW)                                        | Frédéric Houbie, ERDAS, Inc.                                                    |
| ebXML RegRep SWG (ebXMLRegRepSWG)                                            | Frédéric Houbie, ERDAS, Inc.                                                    |
| GeoAPI 3.0 SWG (GeoAPI 3.0 SWG)                                              | Martin Desruisseaux, GEOMATYS                                                   |
| Geographic Linkage Service 1.0 SWG (GLS 1.0 SWG)                             | Peter Schut, GeoConnections - Natural Resources Canada                          |
| GeoSPARQL SWG (GeoSPARQL SWG)                                                | Carl Reed III, Open Geospatial Consortium, Inc.                                 |
| GeoSynchronization 1.0 SWG (Geosync SWG)                                     | Panagiotis (Peter) A. Vretanos, CubeWerx                                        |
| GeoXACML SWG (GeoXACML SWG)                                                  | Jan Herrmann, Technische Universität München, Dept. of Informatics              |
| GML 3.3 SWG (GML 3.3 SWG)                                                    | Clemens Portele, interactive instruments GmbH                                   |
| GMLJP2 1.1 SWG (GMLJP2-1.1SWG)                                               | David Burggraf, Galdos Systems Inc.                                             |
| O&M 2.0 SWG (OM 2.0 SWG)                                                     | Simon Cox, CSIRO                                                                |
| OLS 1.3 SWG (OLS 1.3 SWG)                                                    | Carl Stephen Smyth, MAGIC Services Forum                                        |
| Open GeoSMS SWG (Open GeoSMS SWG)                                            | Kuo-Yu Chuang, Industrial Technology Research Institute                         |
| Ordering Services for Earth Observation Products SWG (order-<br>eo1.0.swg)   | Daniele Marchionni, European Space Agency (ESA)                                 |
| OWS Common 1.2 SWG (OWSCommon1.2SWG)                                         | James Greenwood, SeiCorp, Inc.                                                  |
| OWS Context SWG (OWScontextSWG)                                              | David Wesloh, US National Geospatial-Intelligence Agency (NGA)                  |
| PubSub SWG (PubSub SWG)                                                      | Johannes Echterhoff, International Geospatial Services Institute (iGSI)<br>GmbH |
| PUCK 1.0 SWG (PUCK 1.0 SWG)                                                  | Thomas O'Reilly, Monterey Bay Aquarium Research Institute                       |
| Sensor Model Language (SensorML) 2.0 SWG (SensorML2.0SWG)                    | Mike Botts, Botts Innovative Research                                           |
| Sensor Observation Service (SOS) 2.0 SWG (SOS SWG)                           | Arne Broering, 52° North Initiative for Geospatial Open Source Software<br>GmbH |
| Simple Features SWG (SF SWG)                                                 | John Herring, Oracle USA                                                        |
| Styled Layer Descriptor and Symbology Encoding 1.2 SWG (SLDSE 1.2<br>SWG)    | Olivier Ertz, School of Business & Engineering Vaud (HEIG-VD)                   |
| SWE Common SWG (SWECommonSWG)                                                | Alexandre Robin, Spot Image                                                     |
| WCS 2.0 SWG (WCS 2.0 SWG)                                                    | Steven Keens, PCI Geomatics Inc.                                                |
| Web Mapping Service 1.4 SWG (WMS 1.4 SWG)                                    | Satish Sankaran, ESRI                                                           |
| Web Processing Service 2.0 SWG (WPS 2.0 SWG)                                 | Bastian Schäffer, University of Muenster - Institute for Geoinformatics         |
| WFS Gazetteer Profile 1.0 SWG (WFSgaz1.0 SWG)                                | Doug Nebert, US Geological Survey (USGS)                                        |
| ** - There may be Co-Chairs or Vice-Chairs that are not listed in this table |                                                                                 |


# « Core » OGC standards

Catalogue Service for the Web (CSW)

- Web Map Service (WMS)
- Web Feature Service (WFS)
- Web Coverage Service (WCS)

Web Processing Service (WPS)

- Sensor Observation Service (SOS)
- Sensor Planning Service (SPS)
- Sensor Alert Service (SAS)



Geography Markup Language (GML)



# OGC Domain Working Groups (2011)

#### **Domain Working Groups**

Domain Working Groups (DWG or WG) provide a forum for discussion of key interoperability requirements and issues, discussion and review of implementation specifications, and presentations on key technology areas relevant to solving geospatial interoperability issues.

| Name                                                                         | Lead **                                                                       |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 3DIM WG (3DIM WG)                                                            | Tim Case, Case, Tim                                                           |
| Architecture DWG (Arch DWG)                                                  | Doug Nebert, US Geological Survey (USGS)                                      |
| Aviation DWG (Aviation DWG)                                                  | Navin Vembar, FAA System Operations Airspace and AIM Office                   |
| Catalog WG (Cat WG)                                                          | Doug Nebert, US Geological Survey (USGS)                                      |
| Coordinate Reference System WG (CRS WG)                                      | Victor Minor, Blue Marble Geographics                                         |
| Coverages WG (Cover WG)                                                      | Peter Baumann, FORWISS (Bavarian Research Centre for Knowledge-Based Systems) |
| Data Preservation WG (PreservWG)                                             | Steve Morris, North Carolina State University                                 |
| Data Quality WG (DQ WG)                                                      | Victor Minor, Blue Marble Geographics                                         |
| Decision Support WG (DS WG)                                                  | Stan Tillman, Intergraph Corporation                                          |
| Defense and Intelligence DWG (D and I DWG)                                   | Richard Pearsall, US National Geospatial-Intelligence Agency (NGA)            |
| Earth Systems Science DWG (ESS WG)                                           | Phillip Dibner, Ecosystem Research                                            |
| Emergency & Disaster Management DWG (EDM DWG)                                | Lewis Leinenweber, Evolution Technologies, Inc.                               |
| Geo Rights Management (GeoRM) WG (GeoRM WG)                                  | Roland Wagner, BHT-Berlin (Beuth Hochschule für Technik Berlin)               |
| Geography Markup Language (GML) WG (GML WG)                                  | Ron Lake, Galdos Systems Inc.                                                 |
| Geometry WG (GeometryWG)                                                     | John Herring, Oracle USA                                                      |
| Geosemantics DWG (Semantics)                                                 | Joshua Lieberman, Traverse Technologies, Inc.                                 |
| Hydrology DWG (Hydrology DWG)                                                | David Lemon, CSIRO                                                            |
| Location Services WG (LS WG)                                                 | Marwa Mabrouk, ESRI                                                           |
| Mass Market Geo WG (MassMarket)                                              | Ed Parsons, Google                                                            |
| Metadata WG (Metadat WG)                                                     | David Danko, ESRI                                                             |
| Meteorology & Oceanography DWG (Met Ocean DWG)                               | Chris Little, UK Met Office                                                   |
| Oblique Imagery DWG (ObliqueImageryD)                                        | Shayne Urbanowski, Lockheed Martin                                            |
| Security DWG (SecurityDWG)                                                   | Andreas Matheus, University of the Bundeswehr - ITIS                          |
| Sensor Web Enablement WG (SensorWeb)                                         | Mike Botts, Botts Innovative Research                                         |
| University WG (Univ WG)                                                      | Chris Higgins, Open Grid Forum                                                |
| Web Feature Service WG (WFS WG)                                              | Martin Daly, cadcorp (Computer Aided Development Corp.) Ltd.                  |
| Workflow DWG (Workflow DWG)                                                  | Stan Tillman, Intergraph Corporation                                          |
| ** - There may be Co-Chairs or Vice-Chairs that are not listed in this table |                                                                               |

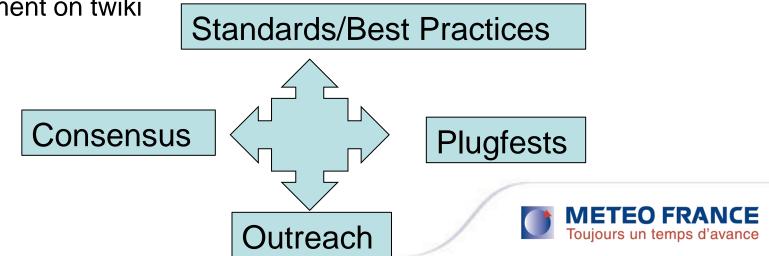


# A Met Ocean Domain Working Group

- Created in 2009 to improve interoperability for Met Ocean data and services
  - A MoU signed between WMO and OGC on November 2009
  - 2 co chairs : Chris Little (UK Met) and Marie-Françoise Voidrot (Meteo-France)
- First aims :
  - Agree on Best Practices recommendations for the Web Map Service Specification
  - Contribute to the development of a model of data consistent with all stakeholders initiatives
- Resources
  - Public TWIKI : <u>http://external.opengis.org/twiki\_public/bin/view/MeteoDWG/WebHome</u>
  - Teleconferences
  - Face to face meetings each 3 monthes during OGC Technical Comittees
- Meteo-France is fully involved to support the consistency of the works



# Challenges for OGC standards in Meteorology \*


- Long history of interoperability at human/paper level
- Spatial & Temporal, 2D, 3D, 4+D, constantly changing
- Not MBytes, but GB, TB and PBytes of data daily.
- Regular & Irregular time intervals
- Timescales: hours,.., seasons,.., centuries, + & -
- Multiple Time attributes
- 'Regular' grids are not always regular
- Continual change of coordinate systems & re-projecting
- Eulerian versus Lagrangian viewpoints
- Vertical coordinates
- Cross-sections, height-time diagrams, T/φs, etc
- Ensembles: probabilistic distributions
- Significant 'Objects', features of interest
- Meteorology specific terminology

\*Courtesy Chris Little



# Activities

- Support communication between Met and OGC communities
- Workshops on the "Use of GIS/OGC standards in meteorology" once a year to identify issues and priorities of work
- Develop OGC experts awareness on Met issues to improve future standards
- Work on Best practices and repositories of vocabulary, symbols, ...
- Plugfests
- Contributing to 2D versus 4D debate in OGC
- Meetings, teleconferences, to push works
- Document on twiki



# Met Ocean Achievements

- WMS 1.3 Best Practice published, no Met terminology
  - Published : http://www.opengeospatial.org/standards/wms
  - Successful EGOWS plugfest 2014 Oslo, next one in ECMWF oct 2015
- SVG Met symbols repository on GitHub
  - <u>https://github.com/OGCMetOceanDWG/WorldWeatherSymbols</u> ] incorporated into gvSig distribution, QGIS next!
- Aviation/Meteorology Conceptual modelling published founded on O&M
- WCS 2.0 Extensions and profile progressing (slice, dice, curtain, ...)
- Met Ocean DWG and Hydro DWG collaboration
  - Hydro WaterML is now WMO standard
  - TimeSerieML on works
- Météo-France participated in OGC IE Test bed



# 4 – Which benefits can we get from interoperability



# Interoperability aims

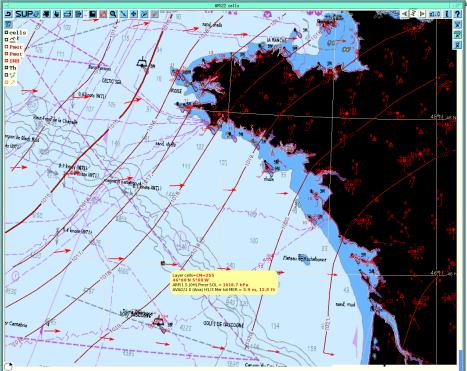
- Make heterogeneous systems compatible
- Facilitate the exchanges and collaboration within your own information system or with external systems
- Quality
- Evolutivity
- Modularity
- Reduce costs and risks



# Interoperability benefits

Interoperability allows to open your information system :

- In output :
- - make your data and services available to other informations systems

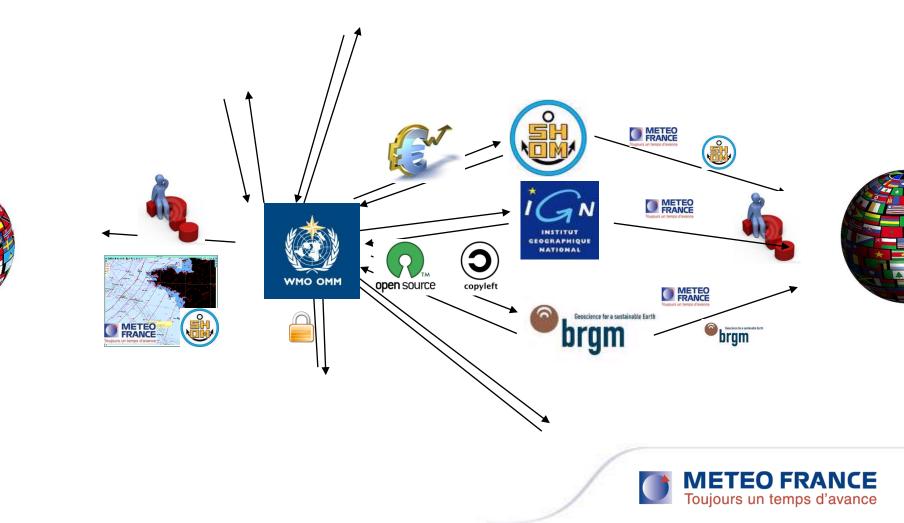



- In input :
  - benefit from more external data , meteorological or not
  - Open streetmap,
- To benefit from open-source developments
  - Openlayers, geoserver, webmap server...



# Example : Combination of marine charts and met data






Marine charts provided by

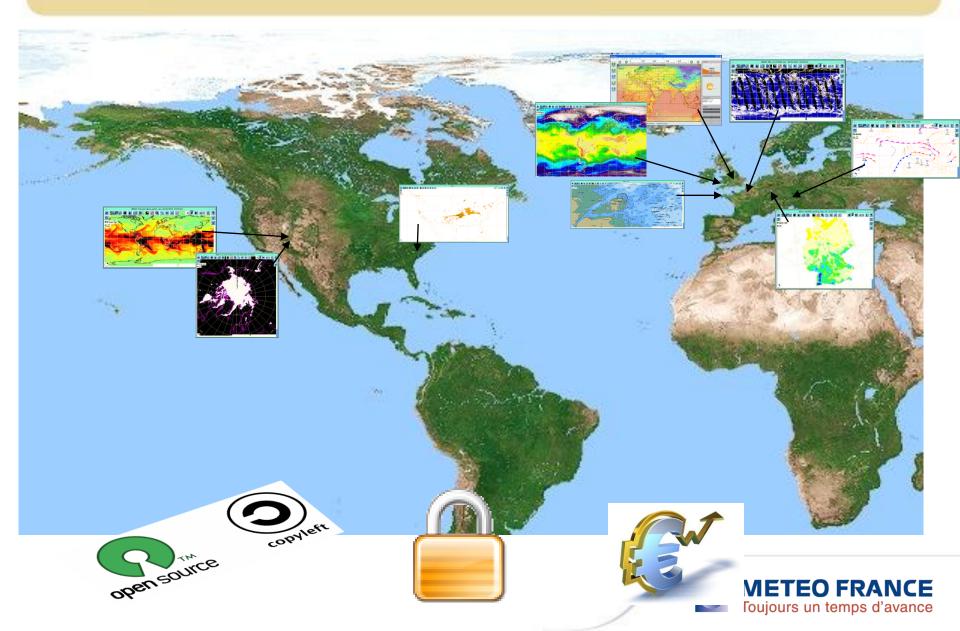




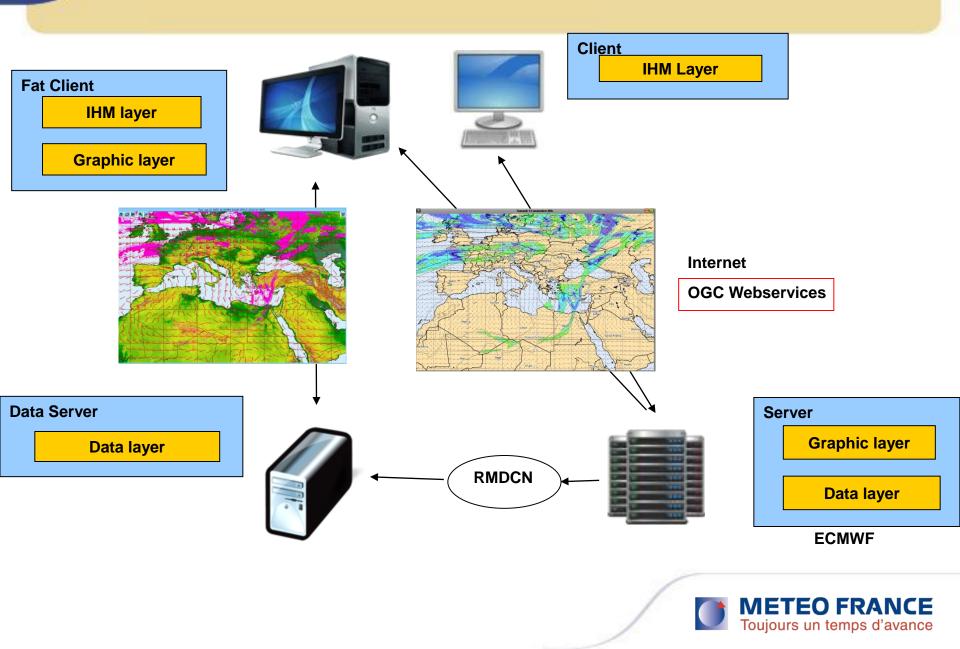
## rom developpement to integration to provide more services



# More easily available


mobile clients




# 5 – Where are we now?



# A blooming of servers



# Validation and quality issues

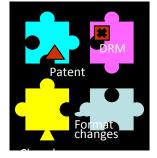


# 4 - Conclusion



# Conclusion : Web services begin to

- Can change the trades off between push and pull dissemination
- Raise up new issues : discovery of the data, selection of the products (quality information...),...
- Change the bases of competence in term of :
  - Services
  - Products
  - Data fusion
- Raise the risks (relyability of the network, reliability of the producer...)
- Develop new possibilities
  - in house
  - towards the outside
- Requires the definition of SLA = Service Level Agreement
  - On our products, data, processes (rights and services commitments)
  - On our providers (requirements of quality level for data, services, ...)




## A major transition phase supported by several initiatives

- Past :
  - interoperability between meteorological services
  - Compatibility with institutional customers

- Future
  - More interoperability with heterogeneous domains
    - Hydrology
    - Agriculture
    - Roads
    - Politics
    - ...







## Some challenges nevermind...

- Always very constrained Time response
- A service continuity anytime
  - With a huge legacy system
  - Critical safety missions
- Standards yes ... but with flexibility to support permanent evolutions :
  - of technology (captors, computers, telecommunications,...)
  - of science
  - Of the users expectations



## Crisis in chinese



# Wei (danger) Ji (opportunity).





Just don't ignore it

Get prepared

