

Water Quality Interoperability Experiment demo

Sylvain Grellet 18/06/2024 - Hydro Domain Working Group

With support from WQ IE group member: Tony Boston, Cristina Cismasu, Igor Chernov, Kevin Christian, Lindsay Day, Adam Griggs, Candice Hopkins, Meghan McLeod, Kyle Onda, Washington Otieno, Philipp Saile, Hylke van der Schaaf, Kathi Schleidt, Lee Stanish

6

brgm

OGC Water Quality IE tl;dr;

- 1°/ WMO-UNEP-WHO-UNESCO Water Quality workshop in March 2022 (29-31) : Surface & Ground water
- 2°/ Kick-off 13/09/2022
- ... 77 (+ impromptu) meetings later
- A Best Practice on Observations, measurements and samples for Water Quality
- A ST API 1.1 + WQ extension (reference implementation in FROST) paving the road to ST API 2.0
- Running implementations in various national, organization endpoints (including clients)
- A steadily growing uptake through initial IE partners + 2 important EU projects and WMO members

3°/ The Engineering Report will prepare next steps on

- a Best Practice for WQ Data Exchange : upgrading OGC WaterML2.0 Part 5 (OGC 14-003) : O&M Profile for WQ Data
- a review of OGC WaterML2.0 Part 1 (OGC 10-126r3) : Timeseries

Both to be updated with regards O&M revision into OMS + major change in the OGC API context

It all starts here : <u>https://github.com/opengeospatial/WaterQualityIE/</u> (model, FROST plugin, ...)

Water Quality IE - setting the scene

OGC Water Quality IE set up

- Third time the topic is proposed within the OGC Hydro Domain Working Group
 - Enough momentum and interest from parties ⇒ WMO-UNEP-WHO-UNESCO Water Quality workshop in March 2022 (29-31) <u>https://external.ogc.org/twiki_public/HydrologyDWG/WaterQualityWorkshopSprint2022</u> ⇒ confirmation of the necessity and organizations interest. Identification of interested parties and IT challenges Discussion on the best approach ⇒ an OGC Interoperability Experiment

- Water Quality IE inception
- \rightarrow Charter, call for participation, kick-off (20/09/2022)

Co-chairs : Sylvain Grellet (BRGM), Kyle Onda (Lincoln Institute)

Since then :

- Starting point : <u>https://github.com/opengeospatial/WaterQualityIE</u>
- Weekly meetings
- Shared material
 - Rolling meeting minutes document,
 - One focal point for UML models
 - Shared deployment documentation initiated
- Note : shared images in that presentation represent Work In Progress currently being tested

The Engineering Report will summarize the group conclusions

Water Quality Use Cases

A B C D E F G н M 0 1 Org_Ide - Org_Fo - Project - Project - Locatio - Locatio - Locatio Locatio - Locatio - Locatio - Locatio - Locatio - Locatio - I 2 11NPSWRINational P ["REDWOC ["Changes 11NPSWRI Elam Cree River/St CA 23 18010102 a Humboldt US Data 3 11NPSWRINational P["REDWOC ["Changes 11NPSWRI Little Lost River/St 23 18010102 a Humboldt US CA 4 11NPSWRINational P ["REDWOC ["Changes 11NPSWRI Harry Wei River/St a Humboldt US CA 23 18010102 11NPSWRINational P["REDWOC["Changes 11NPSWRINorth Forl River/St 23 18010102 a Humboldt US CA 11NPSWRINational P ["REDWOC ["Changes 11NPSWRITom McDeRiver/Stre The monit California United Sta Humboldt US CA 23 18010102 11NPSWRINational P["REDWOC["Changes 11NPSWRINorth Forl River/Stre The monit California United Sta Humboldt US CA 23 18010102 8 11NPSWRINational P ["REDWOC ["Changes 11NPSWRI Tom McD River/Stre The monit California United Sta Humboldt US 23 18010102 CA 9 11NPSWRINational PI"REDWOCI"Changes 11NPSWRIMacArthu River/Stre The monit California United Sta Humboldt US CA 23 18010102 10 11NPSWRINational P["REDW0C["Changes 11NPSWRIEIam Cree River/Stre The monit California United Sta Humboldt US CA 23 18010102 11 11NPSWRINational P ["REDWOC ["Changes 11NPSWRITom McDeRiver/Stre The monit California United Sta Humboldt US CA 23 18010102 12 11NPSWRINational P["REDW0C["Changes 11NPSWRIMacArthu River/Stre The monit California United Sta Humboldt US CA 23 18010102 13 11NPSWRINational P["REDW0C["Changes 11NPSWRI Harry Wei River/Stre The monit California United Sta Humboldt US CA 23 18010102 62 NJDEP BF NJDEP Bur ["HIBI201: ["Headwa NJDEP BF Trout BrocRiver/Stream New Jerse United StaSussex US NI 37 63 NJDEP BF NJDEP Bur ["HIBI201: ["Headwa NJDEP BF Havenmey River/Stream New Jerse United StaBergen US NJ 64 NIDEP BE NIDEP Bur ["HIBI201: ["Headwa NIDEP BE Beattys Br River/Stream New Jerse United Sta Hunterdor US NJ 65 NJDEP_BF NJDEP Bur ["HIBI201: ["Headwa NJDEP_BF Shabakun River/Stream New Jerse United Sta Mercer US 21 66 NJDEP_BF NJDEP Bur ["HIBI201: ["Headwa NJDEP_BF Wawayan River/Stream New Jerse United Sta Sussex US 37 NI 67 NJDEP_BF NJDEP Bur ["HIBI201: ["Headwa NJDEP_BF Brass Cast River/Stream New Jerse United Sta Warren US NI 41 68 NJDEP_BF NJDEP Bur ["HIBI201: ["Headwa NJDEP_BF Jackson Br River/Stream New Jerse United Sta Morris US NI 69 NJDEP BF NJDEP Bur ["HIBI201: ["Headwa NJDEP BF Mill Brook River/Stream New Jerse United Sta Sussex US NI 70 NJDEP BF NJDEP Bur ["HIBI201: ["Headwa NJDEP BF Willoughb River/Stream New Jerse United Sta Hunterdor US NI 19 71 NJDEP BF NJDEP Bur ["HIBI201: ["Headwa NJDEP BF Teetertow River/Stream New Jerse United Sta Hunterdoi US 130 IOWAST \Iowa State["EPA WPI["A ConditIOWAST \Teal Basin Wetland Undifferent Iowa United Sta Cerro Gor US 131 IOWAST_\Iowa State ["EPA WPI ["A Condit IOWAST_\Mallard MWetland Undifferent Iowa United Sta Cerro Gor US 132 IOWAST_\Iowa State["EPA WPI ["A Condit IOWAST_\Christians Wetland Undifferent Iowa United StaWorth US 195 133 IOWAST \Iowa State ["EPA WP[]"A Condit IOWAST \Eagle Flatt Wetland Undifferent Iowa United Sta Hancock US 14 81 134 IOWAST \Iowa State["EPA WP[["A Condit IOWAST \Gladfelter Wetland Undifferent Iowa United Sta Hancock US 81 135 IOWAST \Iowa State ["EPA WP[["A Condit IOWAST \Hanlontov Wetland Undifferent Iowa United Sta Worth US IA 195 136 IOWAST_\Iowa State ["EPA WPI ["A Condit IOWAST_\Hoffman FWetland Undifferent Iowa United Sta Cerro Gor US IA 33

0

Conceptual Goal Bringing together individual data streams

Welcome to the new Water Quality Portal

The Water Quality Portal (WOP) is the premiere source of discrete water-guality data in the United States and beyond. This cooperative service integrates publicly available water-quality data from the United States Geological Survey (USGS), the Environmental Protection Agency (EPA), and over 400 state, federal, tribal, and local agencies. Learn More

North-America

Aggregated data enable visualization and analysis for informed decision-making across national boundaries

jurisdictions in standardized formats that make it easy to discover and use.

Australia

lesses refer to Water Date Online Convicts to send and dising for vising this date

Land Baden-Württemberg

Shared codeLists

Europe

arv/wise	/ObservedProperty/view	https:/	https://dd.eionet		
	ld	Label	Status	Status Modified	Notation
	CAS_100-00-5	1-chloro-4-nitrobenzene	Valid	12.10.2020	CAS_100-00-5
	CAS_100-01-6	4-Nitroaniline	Valid	03.12.2021	CAS_100-01-6
	CAS_100-02-7	Nitrophenol	Valid	12.10.2020	CAS_100-02-7
	CAS_100-41-4	Ethylbenzene	Valid	12.10.2020	CAS_100-41-4
	CAS_100-42-5	Styrene	Valid	12.10.2020	CAS_100-42-5
	CAS_100-44-7	Benzyl chloride	Valid	12.10.2020	CAS_100-44-7
	CAS_1002-53-5	Dibutyltin	Valid	12.10.2020	CAS_1002-53-5
	CAS_10028-17- 8	Tritium	Valid	12.10.2020	CAS_10028-17- 8
	CAS_10061-01- 5	cis-1,3-dichloropropene	Valid	12.10.2020	CAS_10061-01- 5
	CAS_10061-02- 6	trans-1,3-dichloropropene	Valid	12.10.2020	CAS_10061-02- 6

Reported Data from the EU WISE portal

vocabu

Use Cases identification and work methodology

	Org	Fol Type: Water (Surface and Ground together at this stage)				
	Ob served Property group	Quantity	Physical properties	Chemistry	Biology	
	Samples	Here as a support to	1	2	3	
Method	Sensors	WQ				
	Hydro Models					
	Remote Sensing					

Fol = Feature Of Interest = the real world feature on which observation is made

- Water Quality Use Case prioritisation
 - Physical Properties (ex : Temperature, Conductivity), Chemistry
 - + Water Quantity as a support to Water Quality
 - Out of scope this IE : Biology (taxa observation), Hydro Models, Remote Sensing

Use Cases identification and work methodology

Rationale (per Use Case)

Water Quality IE - what do we want to exchange on ?

• Step 1°/ Express the domain need stemming from the UseCases

OGC^{*}

- Step 2°/ Identify the standards in the OGC standard baseline to build on
 - 2 OGC-WMO water standards : GroundWaterML2.0 & HY_Features
 - THE OGC-ISO standard for Observations & Samples : ISO 19156:2023 : Observations, measurements and samples

OGC[®] DOCUMENT: 16-032R3 External identifier of this OGC[®] document: http://www.opengis.net/doc//S/GWMU/22.

OGC WATERML 2: PART 4 - GROUNDWATERML 2 (GWML2)

STANDARD Implementation

APPROVED

Version: 2.2.1 Submission Date: 2019-04-15 Approval Date: 2019-09-15 Publication Date: 2021-01-20 Editor: Boyan Brodaric

Warning: This document is an OGC Member approved international standard. This document is available on a royally free, non-discriminatory basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Open Geospatial Consortium Submission Date: 2017-08-17 Approval Date: 2017-10-16 Publication Date: 2018-01-08 External identifier of this OGC® document: <u>http://www.opengis.net/doc/16/tr/_foatures/1.0</u> Internal reference number of this OGC® document: <u>14-1111</u>rC

Version: 1.0 Category: OGC® Implementation Standard

Editor: David Blodgett, Irina Dornblut

OGC® WaterML 2: Part 3 - Surface Hydrology Features (HY_Features) - Conceptual Model

OGC® WaterML 2: Part 3 - Surface Hydrology

Features (HY Features) - Conceptual Model

Copyright notice

Copyright © 2018 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is an OGC Member approved international standard. This document is available on a royalty free, nondiscriminatory basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Standard Document subtype: Document stage: Approved Document language: English Approval Date: 2022-03-07 Publication Date: 2023-05-26 External identifier of this OGC[®] document: <u>http://www.opengis.net/doc/as/om/3.0</u> Internal reference number of this OGC[®] document: 20-082r4 Version: 3.0.0 Category: OGC[®] Abstract Specification Editors: Katharina Schleidt. Ilkka Rinne

Open Geospatial Consortium

Submission Date: 2021-11-18

OGC Abstract Specification Topic 20: Observations, measurements and samples

Copyright notice

Copyright © 2023 Open Geospatial Consortium To obtain additional rights of use, visit <u>http://www.opengeospatial.org/legal/</u>

Warning

This document is an OGC Member approved international standard. This document is available on a royalty free, nondiscriminatory basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Document type:	OGC [®] Abstract Specification		
Document subtype:			
Document stage:	Approved for public release		
Document language:	English		

• Step 3°/ Express domain needs according to the OGC standard baseline

⇒ Almost everything is in, just need to agree on how to use it

 \Rightarrow mainly UML "Object diagrams exercise" to document the use of the standards

• Backbone to build on: OGC/ISO 19156 (2023) : Observations, measurements and samples (a.k.a OMS)

Credits: Kathi Schleidt, DataCove

https://www.youtube.com/watch?v=bYDSgs2fKLk

• Backbone to build on: Observations, measurements and samples

Conceptual Observation schema

• Backbone to build on: Observations, measurements and samples

- Work organised around the identified UseCases
- Everything available online : <u>https://umltool.ogc.org/login.php</u>
 - Follow this path /OGC IEs/ WaterQuality_IE/ WaterQuality_Instance
- Ground Water (GW)
 - GW_InSitu_QuantityObservation
 - GW_InSitu_QualityObservation
 - GW_ExSitu_QualityObservation
- Surface Water (SW)
 - SW_InSitu_QuantityObservation
 - SW_InSitu_QualityObservation
 - SW_ExSitu_QualityObservation

- 2 modelling patterns
- GW_InSitu_QuantityObservation < > SW_InSitu_QuantityObservation

GW_InSitu_QualityObservation < > SW_InSitu_QualityObservation

• GW_ExSitu_QualityObservation <> SW_ExSitu_QualityObservation

In situ sensor

Ex situ = Laboratory

• **GW**_InSitu_**Quantity**Observation (water level)

• **GW**_InSitu_QuantityObservation (water level)

• **GW**_InSitu_QuantityObservation (water level)

• **GW**_InSitu_QuantityObservation (water level)

• **GW**_InSitu_**Quality**Observation (temperature) => same pattern

• **SW**_InSitu_**Quantity**Observation (river flow) => same pattern

• **SW**_InSitu_**Quality**Observation (temperature, pH) => same pattern

• SW_ExSitu_QualityObservation (ex : Dissolved Oxygen, pH)

• SW_ExSitu_QualityObservation (ex : Dissolved Oxygen, pH)

Ex situ = Lab

• **GW**_ExSitu_**Quality**Observation (ex : Nitrate, Arsenic) => same pattern

Ex situ = Lab

Conceptual Modelling

• **GW**_ExSitu_**Quality**Observation (ex : Nitrate, Arsenic) => same pattern

Ex situ = Lab

Water Quality IE - how do we want to exchange ?

Which interoperable / FAIR API ?

Available options

- 1. OGC WFS/API Features :
- All the identified concepts are Features => could work
- Not tied to a specific semantic/model and quite limited query mechanism on Observation topics
- 2. OGC SensorThings API
 - Semantics : Already Observations & Measurements compliant
 - Powerful query mechanism based on OASIS oData

<u>Decision</u>

- . Use OGC SensorThings API for Observation, Samples sharing and also a bit of River, Aquifer, Well information => core of the implementation, work presented here
- 2. Use OGC WFS / API Features for pure geospatial features description / Use Cases : River, Aquifer, Well etc...

OGC SensorThings API?

- An OGC standard for exchanging sensor data and metadata
 - Historic data & current data
 - o JSON Encoded
 - o RESTful
 - o Adapting OASIS OData URL patterns and query options
 - o Supporting ISO MQTT messaging
- Easy to use & understandable
 - o Discoverable with only a web browser

Layman's terms Observed Observation property method = rainfall amount Sensor type = Rain gauge "2021-05-07T09:50:00.000Z":"16 Observation 3 Observation collection Observer / winter winter spring summer fall spring summer fall Sensor / Feature = rainfall time series of interest Station Sensor intance = The Strasbourg meteo station = Representative zone around the station

OGC SensorThings API?

OGC SensorThings API?

SensorThings API 1.1 – Data Model

SensorThings live demo

- https://airquality-frost.k8s.ilt-dmz.iosb.fraunhofer.de/v1.1
 - ~760 000 000 Observations
 - ~21 000 Datastreams
 - ~5 000 Stations

Docker Quick-Start: https://fraunhoferiosb.github.io/FROST-Server/deployment/docker.html

Full SensorThings API Tutorial https://fraunhoferiosb.github.io/FROST-Server/sensorthingsapi/1 Home.html

SensorThings API 1.1 – API

- Fully Explorable with just a browser
- Composable Responses
- Powerful filtering

https://datacoveeu.github.io/API4INSPIRE/sensorthingsapi/1_Home.html

MQTT:

- 1. Subscribe
 - v1.1/Things
 - v1.1/Datastreams(x)
 - v1.1/Datastreams(x)/Observations
 - etc.

2. Get Notified

Fancy Queries

All data for a map:

v1.1/Things?

\$select=id,name,description,properties&
\$top=10&

\$filter=properties/countryCode eq 'HR'&
\$expand=

Locations(\$select=location),

Datastreams(

\$select=id,name,unitOfMeasurement;
\$expand=

ObservedProperty(\$select=name),

Observations(

\$select=result,phenomenonTime; \$orderby=phenomenonTime desc; \$top=1)

<u>Link</u>

$\textbf{Physical model} \rightarrow \textbf{Mapping to OGC SensorThings API}$

- 1. Map matching concepts
 - Monitoring Facility → Thing + Location
 - Observed Property \rightarrow ObservedProperty
 - Observation Collection → Datastream
 - Observation \rightarrow Observation
 - Observer \rightarrow Sensor
 - Sample \rightarrow FeatureOfInterest
- 2. Add missing Classes
 - SampledFeature (River)?
 - Deployment?
 - Sampler?
 - ObservingProcedure?

SensorThings API 1.1 – Water Quality

STA 1.1 WQ-IE – Sensor Extensions

Extending the Sensor+ Deployment+ ObservingProcedure

STA 1.1 WQ-IE – Sampling

Adding Sampling from OMS

- + Sampling
- + Sampler
- + SamplingProcedure

STA 1.1 WQ-IE – Features

Adding the River as Feature and linking a time series

- + FeatureType
- + Datastream → UltimateFeatureOfInterest

STA 1.1 WQ-IE – Relations

Relating Features to other Features

- + RelatedFeature
- + RelationRole

The same for:

- + RelatedThing
- + RelatedDatastream
- + RelatedObservation

STA 1.1 WQ-IE

Full data model

- Still v1.1 compatible
- Paving the way to STA 2.0

Water Quality IE - lets try and see how this works !

Implementation

- Who
 - Water Quality IE members USGS, USEPA, DataStream (Canada), BRGM, BaFG (Unesco Gems water), Fraunhofer
 - EU Water4All project partners
 - Ex : Danish DEP, ISPRA, Fraunhofer, VITO etc...
 - EU GSEU project partners
 - Many EU geological surveys

• What

• FROST Data Model Plugin

https://github.com/hylkevds/FROST-Server.Plugin.WaterQualityIE

Docker Image <u>https://hub.docker.com/r/hylkevds/frost-http-waterquality</u>

Implementation

- How to get a quick demo
 - Quick Demo Service:

https://ogc-demo.k8s.ilt-dmz.iosb.fraunhofer.de/FROST-WaterQuality/v1.1

- Docker
 - Fetch Docker-Compose file wget <u>https://raw.githubusercontent.com/hylkevds/FROST-Server.Plugin.WaterQualityIE/main/scripts/docker-compose.yaml</u>
 - Start FROST docker-compose up
 - Fetch demo data wget <u>https://raw.githubusercontent.com/hylkevds/FROST-Server.Plugin.WaterQualityIE/main/scripts/BatchSTA-WQ-IE.json</u>
 - Load demo data curl -X POST -H "Content-Type: application/json" -d @BatchSTA-WQ-IE.json http://localhost:8080/FROST-Server/v1.1/\$batch
 - Browse to http://localhost:8080/FROST-Server/v1.1
- Longer Documentation:

https://docs.google.com/document/d/1Oqjxrz8uY_Q9OKBwEM2ZufrCEnIYvA4vWIIJSiMyGT4/edit

Implementation

- Demo endpoints
 - Generic Map client : <u>https://api4inspire.k8s.ilt-dmz.iosb.fraunhofer.de/servlet/is/226/</u> Also tested in QGIS SensorThings API Plugin
 - Open Free-For-All Service (no data yet) <u>https://ogc-demo.k8s.ilt-dmz.iosb.fraunhofer.de/FROST-WaterQuality/v1.1/</u>
 - USGS endpoint (work in progress)
 Data: <u>https://wqp.wqie.internetofwater.app/FROST-Server/v1.1</u>
 Map: <u>https://wqp.wqie.internetofwater.app/</u>

Implementation - WebGenesis client

• It works !

Use Cases +	WQ-IE - Water4All -	Other Data +	Datenschutzerklärung	Impressum	Login
enesis > WQ-I	E - Water4All				4 F 🔺

Water Quality IE / Water 4 All

Implementation - WebGenesis client

It works !

Water Quality IE / Water 4 All

Implementation - WebGenesis client

It works !

// 20240619103007

42.10036

"properties": {

"ActivityMediaName": "Water", "ActivityTypeCode": "Sample-Routine"

// https://wqp.wqie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')

"@iot.selfLink": "https://wqp.wqie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')". "@iot.id": "fec02df5-a2f8-0255-74e5-6cada9d66cb6", "name": "Dissolved oxygen (DO) at 21MICH WQX-821523", "description": "Dissolved oxygen (DO) at 21MICH WOX-821523", "observationType": <u>"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement"</u>, "unitOfMeasurement": { Datastream content WQ IE Compliant "name": "mg/L", "symbol": "mg/L", "definition": "mg/L" "observedArea": { "type": "Point", "coordinates": [-83.51139.

"resultTime": "2006-05-18T10:00:00Z/2006-11-27T10:00:00Z",

"ActivityIdentifier": "21MICH WQX-821523 7/28/2016",

"phenomenonTime": "2006-05-18T10:00:00Z/2006-11-27T10:00:00Z",

"ObservedProperty@iot.navigationLink": "https://wgp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/ObservedProperty", "ObservingProcedure@iot.navigationLink": "https://wop.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/ObservingProcedure", "Sensor@iot.navigationLink": "https://wqp.wqie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/Sensor", "Thing@iot.navigationLink": "https://wqp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/Thing", "UltimateFeatureOfInterest@iot.navigationLink": "https://wqp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/UltimateFeatureOfInte "Observations@iot.navigationLink": "https://wqp.wqie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/Observations" "SourceRelatedDatastreams@iot.navigationLink": "https://wgp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/SourceRelatedDatastre "TargetRelatedDatastreams@iot.navigationLink": "https://wgp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')/TargetRelatedDatastre

It works !

Surface water quality US - Canada : great lakes region

Implementation - WebGenesis client

// https://wqp.wqie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')?\$expand=Observations

"@iot.selfLink": "https://wgp.wgie.internetofwater.app/FROST-Server/v1.1/Datastreams('fec02df5-a2f8-0255-74e5-6cada9d66cb6')", "@iot.id": "fec02df5-a2f8-0255-74e5-6cada9d66cb6", "name": "Dissolved oxygen (DO) at 21MICH_WQX-821523", "description": "Dissolved oxygen (DO) at 21MICH_WQX-821523", "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM Measurement". "unitOfMeasurement": { "name": "mg/L", "symbol": "mg/L", "definition": "mg/L" "observedArea": Datastream/Observation content: WQ IE Compliant "type": "Point", "coordinates": -83.51139. 42,10036 "phenomenonTime": "2006-05-18T10:00:00Z/2006-11-27T10:00:00Z", "properties": { "ActivityIdentifier": "21MICH_WQX-821523_7/28/2016", "ActivityMediaName": "Water", "ActivityTypeCode": "Sample-Routine" "resultTime": "2006-05-18T10:00:00Z/2006-11-27T10:00:00Z", "Observations@iot.count": 4, "Observations": ["@iot.selfLink": <u>"https://wgp.wgie.internetofwater.app/FROST-Server/v1.1/Observations('91cef6b4-2dc1-11ef-a098-a7aa9b8c2d4d')"</u>, "@iot.id": "91cef6b4-2dc1-11ef-a098-a7aa9b8c2d4d", "phenomenonTime": "2006-05-18T10:00:00Z", "resultTime": "2006-05-18T10:00:00Z", "result": 8.39. "resultQuality": "Final", "parameters": { "modified": "2016-01-04T15:21:23", "publisher": "STORET", "status": "Final", "valueType": "Actual"

Implementation - WebGenesis client

It works !

USGS – US Internet of Water - US Water Quality Portal

Other implementation in the US : insitu, groundwater quantity

Implementation - WebGenesis client

• It works !

Other implementation in the US : insitu, groundwater quantity

Implementation - WebGenesis client

• It works !

Surface water quality, ex-situ, France -Germany

Implementation - WebGenesis client

• ×

Méthode applicable pour l'eau et les eaux résiduaires (NF EN ISO 14911 Octobre 1998 - T 90-048) Ca bei bei Grauelsbaum (XX317.00)

----- Calcium in Eau on Eau brute at LE RHIN À DRUSENHEIM with method Méthode non fixée

• French & German Data

Implementation - WebGenesis client

1 Map

Implementation - WebGenesis client

Implementation - WebGenesis client

Other French data : raw insitu groundwater quantity & quality

Other French data : raw insitu groundwater quantity & quality

Implementation - WebGenesis client

Water Quality IE / Water 4 All

Same French & German Data

- ST API compliant version 3.36+
- ST API plugin under revision to use this

Implementation - QGIS client

Q *Projet sans titre - OGIS

► -< LUI</p> USI Information (6 4.4 Latitude nnitude Couches 🗸 通 🖲 1

Projet Éditer Vue Couche Préférences Extensions Vecteur Raster Base de données Internet Maillage SensorThings API Traitement Aide

- D 🖿 🖥 😘 🐒 🖞 🖏 🕫 🔎 💭 💴 🗛 🗛 🗛 🔩 🛄 🕚 😂 🔍 📓 * Σ 🔳 * 🛲 * 🏱 🍭 * 🥵 伦 🗸 🖏 🎬 🕼 🤌 🖉 / - 🕾 //- / 😤 🍓 🗹 📲 📓

🔣 • 🛢 • 🗞 • 🛶 • 🖗 🔣 • 🗱 🛛 • 1 🖓 • 🎝 🖓 🛵 🖧 🛵 🛵 🖄 🗐 • 1 🥗 + 1 🖷 + 1 🖷 🐁 🎯 🔧 1 🔅 1 🗷 Explorateur

explorateur @@								
		Q Location					>	×
		Karlsruhe (CXX359) Station Karlsruhe (CXX359)						
 Historical Locations Locations Points 		Karlsruhe (CXX359) - Messtation K Available observations	arlsruhe (CXX359) bei Rhein					
∛ MultiPoints √°Lines		Name	Description	Ref. dates	Observed property	Sensor	Observations	
Polygons Observations Observed Properties		Frigen113 bei Karlsruhe (CXX359)	Frigen113 bei Karlsruhe (CXX359)	Jan 08 1990 - Dec 23 1991	Frigen113 - µg/l	(ආ) unknownSensor		
E Sensors Things → LUBW - API4INSPIRE		Fluoranthen bei Karlsruhe (CXX359)	Fluoranthen bei Karlsruhe (CXX359)	Jan 02 1981 - Dec 04 2017	Fluoranthen - µg/l	(ŋ) unknownSensor	-	0
Information GPS		O2 bei Karlsruhe (CXX359)	O2 bei Karlsruhe (CXX359)	Jan 22 1973 - Dec 18 2017	02 - mg/l	(ආ) unknownSensor	-	· · · ·
Connecter		1,2,3-Trichlorbenzol bei Karlsruhe (CXX359)	1,2,3-Trichlorbenzol bei Karlsruhe (CXX359)	Jan 02 1996 - Dec 04 2017	1,2,3-Trichlorbenzol - µg/l	(ආ) unknownSensor	-	
nordhude Couches ≪ (∄ ≪ 〒 ६ ~ 球 17 ⊑		2Aminobenz bel Karlsruhe (CXX359)	2Aminobenz bei Karlsruhe (CXX359)	Jan 05 2015 - Dec 04 2017	2Aminobenz - µg/l	(ነ) unknownSensor	-	
Locations MultiPolygon Locations DecMute On Particular		lodocarb bei Karlsruhe (CXX359)	lodocarb bei Karlsruhe (CXX359)	Jan 05 2015 - Dec 04 2017	lodocarb - µg/l	(ආ) unknownSensor		
✓ ● BKGM Water Quality IE - Locations ✓ ■ Fonds cartographiques du monde - ✓ ■ Fonds cartographiques du monde -		Acetamid bei Karlsruhe (CXX359)	Acetamid bei Karlsruhe (CXX359)	Jan 05 2015 - Nov 07 2016	Acetamid - µg/l	(ب) unknownSensor	-	
		3PhenBeSre bei Karlsruhe (CXX359)	3PhenBeSre bei Karlsruhe (CXX359)	Jan 05 2015 - Dec 04 2017	3PhenBeSre - µg/l	(ආ) unknownSensor	-	0
		2,4-DP bei Karlsruhe (CXX359)	2,4-DP bei Karlsruhe (CXX359)	Feb 05 2001 - Dec 04 2017	2,4-DP - µg/l	(<mark>ب)</mark> unknownSensor	-	
	~	m-/p-Xylol bei Karlsruhe (CXX359)	m-/p-Xylol bei Karlsruhe (CXX359)	Dec 26 2005 - Dec 31 2005	m-/p-Xylol - µg/l	(y) unknownSensor		•
		DTPA bei Karlsruhe (CXX359)	DTPA bei Karlsruhe (CXX359)	Dec 23 2002 - Dec 04 2017	DTPA - µgЛ	(ආ) unknownSensor	-	
4	0					((1))		×

Same French & German Data

- ST API compliant version 3.36+
- ST API plugin under revision to use this

Implementation - QGIS client

Implementation - R client

- USGS Water Quality
 Portal data
- + continuous sensor (ex: pH)

Implementation

- Let's do some live demo with
 - Generic clients : <u>https://api4inspire.k8s.ilt-dmz.iosb.fraunhofer.de/servlet/is/226/</u> And QGIS ST API compliant + QGIS ST API plugin
 - Some SensorThings API 1.1 WQ IE compliant data in the US-Canada node

Water Quality IE - Conclusion

Landing the Interoperability Experiment

• When

• Current target => OGC Member Meeting in June 2024 (OGC Hydro DWG session)

- What
 - Demo based on the implementation feedback
 - + draft Engineering Report : will be produced September 2024 onwards
 - summarizing the findings from the IE
 - and proposing next steps. Ex : adoption of a Best Practice for Water Quality data exchange Water ML2.0 Part 5 and (potentially) a revision of WaterML2.0 Part 1 : TimeSeries

Steps after the Interoperability Experiment

- Finalize a Best Practice for Water Quality data exchange Water ML2.0 Part 5 and start a draft revision of WaterML2.0 Part 1 : TimeSeries (to align with OMS and ST API)
- Work on shared 'controlled' vocabularies
 - Observed Property (? using I-ADOPT ?), Observing Procedure, ...
- Current UseCases
 - More implementations : La Plata basin countries (through WMO), more Water4All and GSEU project partners
- Address the other UseCases
 - Out of scope this IE : Biology (taxa observation), Hydro Models, Remote Sensing
 - \rightarrow Enough material for a WQ IE 2 \odot

Some hindsight on the effort

- How the new "Observations, measurements and samples (OMS) " is meaningful to the Interoperability Experiment ?
 - Most of what is needed semantically is already within the OGC semantic baseline : OMS + OGC WaterML2.0 part 3 (HydroFeatures) and part 4 (GroundWaterML 2.0)
 - OGC SensorThings API 1.1 being already Observations & Measurements compliant we just needed to add the missing elements to make it OMS compliant (ex : MaterialSample and some others)

This is now embedded in SensorThings 2.0 working draft (revision ongoing)

Some hindsight on the effort

 How the new "Observations, measurements and samples (OMS) " is meaningful to the Interoperability Experiment ?

 \Rightarrow No need to reinvent the wheel, just use the available standards and document it

Some context supporting this work

• Some supporting national /EU projects from our end (both running now)

OneWater Eau Bien Commun

- French Research project, 53 Million €, 10 years
- <u>https://www.onewater.fr/en</u> (ANR project : 22-PEXO-0009)
- Many domain objectives including FAIR (interoperable) Water Data Exchange

- EU joint research partnserhip
- <u>https://www.water4all-partnership.eu/</u>
- 31 countries, 7 years, 81 Million \in for the 2 years.
- Many domain objectives including FAIR (interoperable) Water Data Exchange
- Your project could join the effort
 - join the OGC Hydro DWG discussions

Thank you

Tony Boston: tony.boston@anu.edu.au **Cristina Cismasu** Igor Chernov Kevin Christian: christian.kevin@epa.go Lindsay Day:lindsay@datastream.org Sylvain Grellet: s.grellet@brgm.fr Adam Griggs: Grigg<mark>s.Adam@</mark>epa.gov Candice Hopkins: chopkins@usgs.gov Meghan McLeod: meghan@datastream.org Kyle Onda: konda@lincolninst.edu Washington Otieno: WOtieno@wmo.in Philipp Saile: philipp.saile@un.org Hylke van der Schaaf: hylke.vanderschaaf@iosb.fraunhofer.de Kathi Schleidt: kathi@datacove.eu Lee Stanish: Istanish@usgs.gov