

Science For A Better Life

Case Study in Geospatial Analytics: Building a Global Platform for Agro-Environmental Analysis

OGC Agriculture Domain Working Group 2016

09-22-2016 / Kris Matson / Version 2

© Bayer CropScience • September 2016

Bayer CropScience On-Farm Trials Studying Real-World Product Response

30ft x 30ft research trial plot

Must understand crop protection product effects in real-world situations

- Efficacy trials on 30 X 30 foot plots do not easily translate to ½ mile X ½ mile fields
 - Not enough variability in the small plot
 - Large fields are not homogeneous
 - Practical conditions differ from R&D

Why answer questions on product response in the real world?

- Help growers to be more profitable and grow more crops
- Help growers to be more sustainable limit off-target effects

Helping growers to be more profitable and sustainable

Bayer CropScience On-Farm Trials

Challenges in trial data collection and management

Communicating and Managing Trial Protocols

- Originally communicated only at season start
- Insufficient data collection guidance
- Lack of visibility into protocol workflow & issues

Timely Collection of Protocol Data

Bulk data egress at end-of-season \rightarrow #epicfail

Missing Metadata

Metadata is required for on-field activities well as geospatial data

High-Variety & High-Volume Data

- Equipment, sensors, & FMIS software format all aggregate data differently
- **Result: Analysis and Modeling At-Scale is Difficult or Even Impossible**
- For analytics at-scale, standards are not optional

End of year 1 - complete data from only 50% of trials.

- Question: How to scale from 30 to 200 fields?
- Answer: STANDARDS

USB is a standard... but what about the files?!

© Baver CropScience • September 2016 Page 4

Bayer

Neather Viewe

Imagery

Seeding

Applications

Soil Sampling Scouting Harvest

What We Are Building

A Field Trial Protocol Management System \rightarrow FTPro

Analyze multiple fields and seasons

Preplanting

V5-V6 Fungicide

Planting 2 0

analytics+insights

for life science

Sas

Ag-Enviro Models

lifescale

analytics

Inspiration for this Presentation

Vision for Geospatial Analytics via Open Standards

The Future of Geospatial Analytics through Open Standards

George Percivall CTO, Chief Engineer Open Geospatial Consortium percivall@myogc.org

© 2016 Open Geospatial Consortium

OGC Future of Geo-Analytics

Lack of interoperability is a serious technical debt

Lessons from the success of Apache Spark...

interchange is necessary for the ecosystem

major use cases tend to build their own ML libraries – despite a case where a majority of committers tend to support a common vision and encourage use of a canonical library (MLLib with DataFrames)

when a successful business grows over time, challenges arise by definition: managing separated teams, mergers and acquisitions, increased audits, regulations, etc.

therefore, lack of interchange for analytics represents a serious technical debt and potential liability

Source: "Use of standards and related issues in predictive analytics" KDD 2016, SF 2016-08-16 Paco Nathan, O'Reilly Media

Selected Big Data activity on Stack Overflow

Spai

OGC Big Geo Data Analysis Use Case Presented at ENVI Advanced Analytics Symposium

analytics+insights

analytics for life science

Big Geo Data

Big Data Use Case for Ag R&D Trials High-Variety & High-Volume Analytic Pipeline

Typical Field Data Sources Agronomic, Management, and Spatial data

Agronomist + Grower Collected Data IoT Equipment Generated Data

- Field Boundary
- Field Scouting
- Soil Cores
- Soil Chemical Analysis
- Crop Tissue Samples
- **Public Sector Data**
 - Elevation
 - Soil
 - Landsat

- Planting (Seeding)
- As-Applied Fertilizer
- As-Applied Herbicide
- As-Applied Pesticide
- As-Applied Insecticide
- Harvest (Yield)

. . .

Weather Stations

- Stratego YLD As-Applied from Spraver
- NDVI Imagery (0.5M resolution)

Multi-Source Imagery

NIR Imagery
 5M resolution)

- UAS, Air-borne, Satellite
- NDVI and other derivative products

Agronomist & Grower Collected Data

Varying sources, structure, aggregation and standards

Sensors and Multi-Source Imagery Covariate data capture and aggregation

SST agX Cloud Standards and AWS interface for field data

- Standardized cloud interface for agriculture operations data
 - Field-specific data payloads
 - Management data ۲
 - Spatial data
- XML encoding
 - Robust schemas XSD encoded
 - WKT shape types for geometries
 - GeoTIFF for imagery
- **Practical standard supporting:**
 - Farm operations
 - System interoperability

Farm management information system

+ <xsd:element name="NO3_N" minOccurs="0";

Soil Sampling Task v 2.0

Bayer to evaluate this next quarter - global objective


```
<?xml version="1.0" encoding="UTF-8"?>
- <SoilSample xmlns="http://www.sstsoftware.com/EDS/SoilSamplingTask.xsd" SchemaVersion="2.0"</p>
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
     <SyncID>20</SyncID>
     <ParentEventID>dcf0831c-aa91-41bb-9a77-6ae2367e2e71</ParentEventID>
     <ModifiedOn>2016-07-14T16:19:33.248Z</ModifiedOn>
   - <Records>
      - <Record>
            <RecordNum>0</RecordNum>
            <SampleID AgXAttID="502">1</SampleID>

    <TopsoilSamplingDepth>

               <Depth AgXAttID="503">12</Depth>
             - <Unit AqXAttID="504">
                  <ID>52</ID>
                  <Name>in</Name>
               </Unit>
            </TopsoilSamplingDepth>
            <Soil_pH AqXAttID="728">6.9</Soil_pH>
          - < OM >
               <Measure AgXAttID="731">3</Measure>

    <Unit AgXAttID="1217">

                  <ID>329</ID>
                  <Name>Percent</Name>
               </Unit>
            </OM>
          - <P>

    <Phosphorus>

    <ExtractionMethod AgXAttID="739">

                      <ID>2</ID>
                      <Name>Bray 1</Name>
                  </ExtractionMethod>
                - <ObservedP>
                      <Measure AqXAttID="738">70</Measure>

    <Unit AqXAttID="740">

                         <ID>324</ID>
                         <Name>ppm</Name>
                      </Unit>
```


FTPro Architecture High-Level System Object Model

Lifescale

analytics analytics for life science

Principles of our Approach

Iterations on a Minimum Viable Product

- Standardize the workflow UI and UX in software first
 - Maximizes Product Owner participation at the start
 - *Then* iteratively re-engineer the back-end and interfaces as demanded by user stories
- Maximize use of Open Systems and Open Standards in early platform development phases
 - Core back-end systems are the hardest to change
 - Use COTS proprietary systems for fast build-out where expedient
- Maximize use of loosely coupled web services for platform interfaces
 - It is easier to use other's interfaces than design and build your own
 - De-couple interfaces later where proprietary interfaces or tight-coupling was used in early iterations, guided by technical debt and/or user stories
- Be highly aware of accumulating technical debt
 - Keep track in the product backlog
 - Standards are practical and essential but require thinking beyond the next 2 sprints

Standardizing the Protocol Contract Template the protocol and its component parts

- The Job is a template
- The Job Step is a template

Allows flexibility for each experiment while governing inputs

BAYER

Standardizing the Protocol Workflow Adding Context – Geospatial Data is not Enough

Upload Data for 2016 Harvest						
Step 1: Select a ZIP File for Upload Upload Instructions						
File Name		Туре С	Type Comments		Upload zipped shapefile of harvest data containing .shp, .shx, .dbf, and .prj files, or zipped .csv file. Complete	
Choose File No file chosen		zip No comment		it		l
Step 2: Complete Additional Data			all additional data. Please name uploaded file with the following nomenclature:		all additional data. Please name the uploaded file with the following nomenclature:	en: /ex
Harvest date	10/16/2015			Î	GrowerFarms_Fieldname_Harvest	
Header width	30	feet	•	I	Upload Status	l
Display monitor make & model	2630			l		l
% Moisture	17.5	%	•	Ŧ		I
Step 3: Add Step Comments						
Add Comments					Οv	
Add Comments						
					Upload Cancel	

Metadata Capture Form

Contextual data varies depending on the job step

- Provides a flexible way to collect field and protocol management data without making changes to the data model
- The seed variety may be very important for understanding the harvest
- Equipment manufacturer will be important for application, but not for soil sampling

Standardizing the Analytic Pipeline JSON Templates for Analytics

Each data set type has unique spatial processing sequences

- Spatial processing templates areeasily configured and stored as JSON objects
- Gives users the ability to tailor analytics to the research objectives and source of data collection

Edit or Delete Form				
Form Name: 2016 Harvest Expected Dataset	object {2}			
Template YIELD MAP	<pre>point {4} mathod: empirical_bayesean_kriging</pre>			
Attribute Name Input Type Default Value I	aggregation : MCAN			
Harvest date 💌 🋗 10/31/2016	 applicable_attributes [1] 			
Header width number 💌	0 : yld_ybl_dr			
Display monitor mak text 💌	▼ parametere {3}			
% Moisture number 💌	trinsformation_type : NONE			
+ Add Attribute	threshold_type : EXCEED			
	semivariogram_model_type : LINEAR			
Upload zipped shapefile of harvest data containing .shp.,shv.,dbf, and .prj files, c Complete all additional data. Please name the uploaded file with the following nd GrowerFarms_Fieldname_Harvest { } { } { } { } { } { } { } { } { } {				
method : tabulate_intersection				
K	applicable_attributes [1]			

Authoring the Data Input Form

Syntax

EmpiricalBayesianKriging_ga (in_features, z_field, {out_ga_layer}, {out_raster}, {cell_size},
{transformation_type}, {max_local_points}, {overlap_factor}, {number_semivariograms},
{search_neighborhood}, {output_type}, {quantile_value}, {threshold_type}, {probability_threshold},
{semivariogram_model_type})

Standardizing the Ingest

Templates for Schema Mapping and Visualization

Each internal geospatial data type has a standard schema

- Interactive schema mapping transforms data from any source to a common Level 2 data model for visualization, plus first-order analytics and modeling
- Deeper analytics go to the Level 1 data store
- Visualization symbology is also a usermodifiable template

Weather Viewer - Durham, NC, USA

Schema mapping

Weather Service for On-Field Stations Private weather station aggregation architecture v.1

Each station xmits • raw to Davis weatherlink cloud. 15 min intervals

BAYER

- Weatherlink • aggregates, publishes JSON messages
- **BCS AWS service** subscribes and aggregates JSON in RDBMS
- BCS publishes **REST** interfaces for consuming apps

analytics+insights

Science For A Better Life

Thank you!

Kris Matson -- Geo-Analytics, Data Visualization, Software Development

Kris.Matson@bayer.com / kmatson@lifescaleanalytics.com / m: 919-810-1839

